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A B S T R A C T   

Studies that quantify speech tempo on acoustic grounds typically use one of various rate measures. The avail-
ability of multiple measurement techniques yields ‘researcher degrees of freedom’ which call the robustness of 
generalisations across studies into question. However, explicit assessments of the possible impact of researchers’ 
choices amongst the available measures are rare. In this study we attempt such an assessment by comparing the 
distributions of five common rate measures–canonical and surface syllable and phone rates, and CV segment 
rate–calculated over fluent stretches of unscripted speech produced by 100 English speakers. We assess the 
measures’ inter-correlations across the corpus as a whole as well as in relevant data samples to simulate multiple 
analysis scenarios. We also report on deletion rates in our corpus, as they determine the relationship between 
canonical and surface rates; we assess the impact on rate figures of variable assumptions as to what constitutes 
deletion; and we compare the measures’ discriminating powers in a forensic analysis context using Bayesian 
likelihood ratios. Our results suggest that in a sizeable English corpus with normal deletion rates, the five rates 
are closely inter-correlated and have similar discriminating powers; decisions as to the segmental make-up of 
canonical forms also have limited impact on distributions. Therefore, for common analytical purposes and 
forensic applications the choice between these measures is unlikely to substantially affect outcomes.   

1. Introduction 

Studies that quantify speech tempo through signal-based measure-
ments tend to use one of various available measurement techniques. 
Researchers choose what to count—words, syllables, phones, or derived 
units such as C and V segments (e.g. Dellwo et al., 2006; Pfitzinger, 
1996) —and what temporal domains to count in—total speaking time 
including or excluding pauses, or stretches of speech such as clauses, 
intonation phrases, inter-pause stretches or memory stretches (e.g. 
Dankovičová, 1997; Jessen, 2007). When counting syllables or phones, 
researchers can count units as expected in canonical pronunciations, or 
as actually observed in their data (e.g. Koreman, 2006). These meth-
odological choices are one example of ‘researcher degrees of freedom’ in 
phonetic and related research (Roettger, 2019; Simmons et al., 2011): 
the availability of multiple alternative methods for operationalizing a 
phonetic parameter brings with it the risk that researchers—intention-
ally or unintentionally—select the method that produces the clearest 
analysis results. In any case, the availability of multiple methods means 
that comparing findings across studies is not always straightforward 

(Jessen, 2007). Individual studies typically present the outputs of one 
technique only, and studies that do refer to multiple techniques do not 
necessarily report on correlations between their outputs. We are 
generally left to wonder, therefore, whether this particular methodo-
logical choice has been consequential for the reported data patterns. 

One might argue that differences between the distributions of values 
yielded by alternative tempo quantification techniques are likely to be 
small and therefore do not need our attention. Still, empirical confir-
mation of this likelihood is better than the absence thereof, especially 
since speech tempo is quantified in various applied contexts, such as 
those of forensic casework (Gold and French, 2011; Jessen, 2007), 
speech therapy (Martens et al., 2015; Pellowski, 2010), mental health 
diagnosis (Cummins et al., 2015; Mundt et al., 2007) and language 
learner assessment (Bosker et al., 2013; Wang et al., 2018). In this paper 
we quantify speech tempo using four commonly used measures: syllable 
rate based on canonical unit counts (‘canonical syllable rate’) and counts 
of observed units (‘surface syllable rate’), and phone rate based on ca-
nonical unit counts (‘canonical phone rate’) and counts of observed units 
(‘surface phone rate’). We also include a fifth measure (‘CV rate’) to 
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which we will return below. 
In a language like English, the four common measures just 

mentioned may yield rather different figures on selected stretches of 
speech. In English, one syllable can correspond to between one (V) and 
seven phonemes (CCCVCCC). The temporal organisation of syllables is 
such that increases in syllable complexity are not associated with uni-
form increases in syllable duration (Browman and Goldstein, 1988; 
Byrd, 1995; Marin and Pouplier, 2010): therefore, increases in 
complexity tend to correspond to decreases in measured syllable rate but 
increases in phone rate. In the corpus of American English telephone 
speech of Greenberg et al. (2003), the mean duration of a stressed CVC 
syllable is 310 ms, and that of a stressed CCVC syllable is 382 ms. The 
former yields a phone rate of 9.7 and a syllable rate of 3.2; the latter a 
phone rate of 10.5 (up 8%) and a syllable rate of 2.6 (down 19%). This 
means that it is not difficult to find utterance pairs for which a syllable 
rate measure identifies one member as faster and a phone rate measure 
identifies the other. Similarly, Jessen (2007) describes the ‘curious ar-
tefacts when a speaker in speaking rapidly deletes canonical syllables, 
whereas another speaker might reduce or delete perhaps the same 
number of canonical sounds but still preserves the number of underlying 
syllables’. In these cases, deciding between the four measures is 
non-trivial. 

With specific reference to ‘canonical’ and ‘surface’ rates, Den Os 
(1985) reports correlations of up to r = 0.98 for her experimental 
stimuli. However, these comprise two sets of nine read sentences (in 
Dutch and Italian). As the relationship between canonical and surface 
rates is largely determined by the prevalence of (syllable or phone) 
deletion, it is no surprise that in carefully produced speech, canonical 
and surface are close to equivalent. In spontaneous, or at least un-
scripted speech, by contrast, differences between ‘canonical’ and ‘sur-
face’ syllable rates may be substantial. A phrase like I suppose this 
terrain is hard produced in 1.6 s yields a canonical syllable rate of 5; 
when produced with schwa deletion in both suppose and terrain the 
surface rate would be 3.75. The difference between the two figures is 
well above the ‘just noticeable difference’ for temporal variation in 
speech of around 5% (Quené, 2007). A pertinent question is how such 
differences translate to measurements taken over collections of utter-
ances used in actual studies: for example, stimulus sets used in listening 
experiments, language learner speech samples, or larger corpora. 

One context in which explicit comparison of tempo measures has 
taken place is that of forensic analysis, in which tempo is generally 
considered a relevant parameter for voice comparison (Gold and 
French, 2011).1 Here, the aim is to establish the relative discriminating 
power of available measurement techniques. For German, Künzel (1997) 
reports that ‘speech rate’ calculated over stretches of speech including 
pauses and hesitations shows more speaker-internal variation than 
‘articulation rate’ calculated over fluent stretches of speech only; 
therefore, articulation rate has greater speaker-discriminating power. 
Jessen (2007) reports articulation rate distributions for 100 German 
speakers, and compares population statistics reported across studies of 
speech tempo in German. Gold (2014) presents population statistics for 
100 speakers of Southern Standard British English (SSBE), comparing 
articulation rates calculated over inter-pause and memory stretches with 
variable minimum length requirements. Gold (2014) quantifies the 
discriminating power of the alternative measures using Bayesian like-
lihood ratio (LR) calculations, which provide an assessment of ‘strength 
of evidence’ given competing hypotheses concerning the relationship 
between samples of speech (Gold and Hughes, 2014). Gold (2014) 

reports that syllable rates calculated over inter-pause and memory 
stretches yield near-equivalent discriminating powers: in other words, 
this particular methodological decision—the choice of domain over 
which to quantify articulation rates—has no substantial impact on 
analysis outcomes. Gold also investigated the effect of imposing 
different minimum length requirements when identifying stretches to 
calculate articulation rates over. She reports that as the length 
requirement moves up, within-speaker variation goes down; however, 
this does not have a substantial effect on discriminating power. So again, 
this methodological decision—the choice between possible minimum 
stretch lengths—appears to have little impact on analysis outcomes. 

In this study we build on this previous work by comparing further 
alternative tempo measures, calculated on the memory stretch corpus of 
Gold (2014), in terms of their inter-correlations and relative discrimi-
nating powers. By reporting inter-correlations, we hope to inform any 
future studies in which the analyst is faced with a choice between the 
alternative tempo measures, and may wonder whether the choice is 
likely to be consequential for analysis outcomes. The higher the 
inter-correlations, the lower the likelihood that the methodological 
choice is consequential. We report correlations calculated across a 
sizeable corpus of Standard Southern British English unscripted speech, 
as well as correlations calculated over various data subsets, to simulate 
analysis scenarios that involve sampling stretches of speech from a 
larger corpus. By reporting relative discriminating powers, quantified 
using Bayesian LR calculations, we provide an example of one particular 
type of analysis in which a choice between alternative measures might in 
theory be consequential. High inter-correlations across speakers should 
translate to small differences in this analysis. 

We should emphasize at the outset that it is impossible to concretely 
quantify the likelihood that a choice between two alternative measures 
will affect analysis outcomes. Consequently, there is no simple criterion 
for deciding whether two variables are correlated closely enough to be 
considered ‘effectively equivalent’. Still, some general guidance can be 
gleaned from the literature on collinearity in multivariate analysis (e.g. 
Dormann et al., 2013; Tomaschek et al., 2018; Tu et al., 2005). Collin-
earity is observed when two predictor variables are linearly related to 
each other; when both are entered into a model predicting a third var-
iable, the resulting model parameters can be difficult to interpret and 
unstable across alternative stepwise model building procedures. A 
common remedy is to reduce the number of predictor variables prior to 
modelling, either by conflating linearly related variables or by simply 
not entering individual predictors that are linearly related to others 
(Dormann et al., 2013). The latter approach is justified when it is not 
clear to what extent the information provided by an individual collinear 
predictor adds to that provided by the predictor with which it is 
collinear (Tu et al., 2005). In relation to pairwise correlations between 
predictors, Dormann et al. (2013) refer to a ‘folk lore’ threshold’ of 
r>0.70 for potentially removing predictors. They conclude on the basis 
of regression modelling simulations that deselecting predictors corre-
lated with each other at r>0.70 is indeed an effective ‘rule of thumb’. 
This suggests that for a range of analytical purposes, variables which are 
correlated with each other at r>0.70 overlap sufficiently in the infor-
mation they can provide to be considered ‘effectively equivalent’. We 
will interpret observed inter-correlations among our tempo measures 
with reference to this criterion. 

We compare articulation rates derived from syllable, phone and CV 
segment counts; for syllable and phone rates, we compare rates based on 
canonical and surface unit counts. To elucidate the latter comparison, 
we also report syllable and phone deletion rates for our corpus. Ca-
nonical and surface syllable and phone rates are reported in a wide range 
of studies. We additionally included the less widely used ‘CV rate’. This 
is an available measure in the multilingual BonnTempo corpus (Dellwo 
et al., 2005), and Dellwo et al. (2006) assert that it ‘has the advantage 
[over syllable rate] that labelling can be performed more objectively 
especially for the faster speech rates because acoustically phonetic cat-
egories such vowel and consonants are easier identifiable on an acoustic 

1 In relation to automatic speech recognition, Fosler-Lussier and Morgan 
(1999) summarize some inconsistent findings as to whether word rates are 
more predictive of system error than syllable and phone rates. In the clinical 
domain, comparison between rate measures has focused on finding automated 
rate extracting methods whose output figures map closely to syllable counts by 
human practitioners (e.g. Bakker, Brutten, & McQuain, 1995). 
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level than the phonological category ‘syllable’’. We were therefore 
particularly interested in the correlation between syllable and CV rates. 

2. Method 

2.1. Corpus 

Our corpus comprises 2786 ‘memory stretches’ extracted from the 
Dynamic Variability in Speech Corpus (DyViS) (Nolan et al., 2009) by 
Gold (2014). The DyViS database was designed primarily to yield reli-
able population statistics for forensic phonetic work on British English 
(see Hughes et al., 2016; McDougall and Duckworth, 2017). It comprises 
recordings of 100 male speakers of Standard Southern British English 
(SSBE) in the age range 18–25 undertaking two role-play tasks relevant 
in a forensic context (a simulated police interview and a telephone call 
with a supposed accomplice) and two reading tasks, all recorded in 
studio conditions. Gold (2014) used the recordings of telephone calls 
with a supposed accomplice to derive population statistics for articula-
tion rate. In this task, participants were engaged in a conversation with 
an interlocutor who wanted to compare accounts of a fictional crime. 
Participants were given visual stimuli such as pictures of people and 
places to allow them to construct their accounts. 

Gold (2014) adopted the general methodology of Jessen (2007), 
segmenting the recordings for each participant into 26–32 ‘memory 
stretches’. In this procedure, ‘the phonetic expert goes through the 
speech signal and selects portions of fluent speech containing a number 
of syllables that can easily be retained in short-term memory’ (Jessen, 
2007). According to Jessen, this method is more efficient in casework 
practice than delimiting inter-pause stretches or intonation phrases, 
which are commonly used as phrasal domains in non-forensic studies (e. 
g. Dankovičová, 1997; Jacewicz et al., 2010; Mixdorff and Pfitzinger, 
2005; Quené, 2008). Gold extracted a total of 2993 memory stretches, of 
which we excluded 207 from our analysis for reasons given below. Like 
Jessen, Gold (2014) stipulated a minimum stretch length of four (ca-
nonical) syllables, and left the maximum stretch length up to her own 
judgement of ease of recollection. Gold counted syllables through close 
listening and native speaker intuition as to the canonical syllabic 
make-up of each memory stretch; articulation rate values were derived 
from these counts. 

Gold (2014) produced a verbatim transcription for each memory 
stretch. For the purpose of automatic alignment we had to edit some of 
these transcriptions, as explained below. Table 1 provides summary 
statistics derived from the edited transcriptions. For numbers of words, 
contracted forms (e.g. do not) were counted as single words. Abbrevi-
ations had to be written out as multi-word phrases, as explained below, 
and were therefore counted as multiple words. Street names (e.g. Harper 
Avenue) were also counted as multiple words. For numbers of canonical 
phones, the verbatim transcriptions were translated into SAMPA sym-
bols (Wells, 1997). Long vowels, diphthongs and affricates were all 
counted as single phones on phonological grounds. The distributions 
summarised in Table 1 all show positive skew, exemplified in Fig. 1 for 
duration: they approximate a normal shape up to about 2 s duration, 10 
words, 12 syllables and 35 phones, covering approximately 80% of the 
corpus—and the remainder of memory stretches have values up to the 
maxima in Table 1. 

2.2. Segmentation and rate calculation 

We used WebMAUS (Kisler et al., 2017) for segmentation, using a 
‘pipeline’ of G2P (which converts input graphemes to SAMPA phones), 
MAUS (which does the automatic alignment) and PHO2SYL (which adds 
syllable boundaries to output segmentations). We used the ‘English 
(GB)’ language model, which was trained on the phonetic transcriptions 
of the Aix-MARSEC database (Auran et al., 2004). We initially worked 
with Gold’s total corpus of 2993 memory stretches. The input ortho-
graphic transcriptions were those provided by Gold (2014) with some 
edits to prevent recurrent errors identified in G2P trials: for example, 
abbreviations had to be written out ‘phonetically’ (e.g. ‘vee double you’ 
for ‘VW’) for the corresponding phones to be identified, while ‘no’ had to 
be rewritten ‘know’ to avoid it being treated as an alternative spelling of 
‘number’. Syllabification was done within word boundaries. The second 
author manually checked the output phone and syllable segmentations 
using Praat (Boersma and Weenink, 2017). An example TextGrid is 
shown in Fig. 2. As we were interested in syllable and phone rates, the 
precise location of boundaries was not a major concern. The second 
author therefore applied a relatively light correction protocol to deal 
with misalignments: when two or more successive segments with clear 
acoustic correlates in the signal missed their targets (i.e. the segment 
clearly did not accurately delimit the acoustic correlates), the segments’ 
boundaries were manually moved to a more accurate position. 
Approximately 7% of memory stretches underwent this kind of 
correction. 

As we were interested in phone and syllable deletions, the second 
author applied a more elaborate correction protocol to deal with Web-
MAUS’ inaccuracies in judging whether phones were delimitable as 
segments. First, the second author identified a set of frequent lexical 
items whose productions included heavily reduced ones which Web-
MAUS recurrently segmented inaccurately. These items included actu-
ally, probably, occasionally, remember, and didn’t. All productions of this 
set of items were transcribed independently by the first author and 
another phonetician, and segmentations were corrected to match 
consensus transcriptions. Second, leaving these frequent lexical items 
aside, WebMAUS sometimes treated a phone (most commonly schwa) as 
deleted when a segmental acoustic correlate could be delimited rela-
tively easily; this happened in approximately 10% of memory stretches. 
More commonly, in approximately 30% of stretches, WebMAUS treated 
a phone (again most commonly schwa) as present in the surface form 
when no segmental acoustic correlate could be delimited. All of these 
cases were manually corrected by the second author in consultation with 
the first author. Third, WebMAUS often correctly identified the presence 
or absence of a schwa in ‘syllabic consonant’ contexts such as bottle 
[ˈbɒtəl]~[ˈbɒtl]̩—but inaccurately treated the surface forms as mono-
syllabic when schwa was absent. These syllabification errors (which 
occurred in approximately 12% of memory stretches) were also cor-
rected. Several additional issues were identified while checking the 

Table 1 
Summary statistics for stretch length, calculated across our corpus of 2786 
memory stretches.   

mean minimum maximum 

duration (sec) 1.43 0.43 3.45 
N words 7 2 24 
N syllables (canonical) 9 4 26 
N phones (canonical) 25 9 72  

Fig. 1. Distribution of memory stretch durations across our corpus of 2786 
memory stretches. 
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segmentations, including a small number of stretch-internal silent pau-
ses with a duration above 50 ms (although short enough for Gold not to 
have identified them), missing initial or final phones, excessive creak 
and signal disturbances making accurate segmentation impossible. We 
excluded the relevant memory stretches (N = 207, or 7%) from our 
analysis, taking the corpus size down to 2786 memory stretches. 

We extracted canonical and surface syllable and phone rates (in 
syllables and phones per second) from the corrected segmentations, 
alongside syllable and phone deletions per memory stretch. As indicated 
above, we also calculated CV segment rates, following Dellwo et al. 
(2006). For this, we grouped any immediately consecutive consonantal 
phones (within and across word boundaries) into a combined C segment, 
and any immediately consecutive vocalic phones into a V segment. 
Following Arvaniti (2012) we treated /w/ and /j/ as consonantal if there 
was evidence of frication in their production; we treated /l/ and /ɹ/ as 
consonantal throughout. We then divided the total number of C and V 
segments in each memory stretch by the stretch’s duration. 

2.3. Deriving deletion rates 

We coded all phone deletions for the phones involved, and mapped 
both syllable and phone deletions to part-of-speech tags for the words 
they occurred in. The latter allowed us to complement our primary 
analysis of articulation rates by memory stretch with analysis of syllable 
and phone deletions at the word level, as well as analysis of phone de-
letions at the phone level. In particular, it allowed us to quantify de-
letions within and across function and content words, for comparison 
with Johnson (2004) and others, and to rank canonical phones accord-
ing to their individual deletion rates. For the word-level analysis, we 
derived part-of-speech tags from the KELLY English lexicon (Kilgarriff 
et al., 2014), which comprises approximately 7500 lemmas with 
part-of-speech tags. As the KELLY lexicon does not list individual word 
forms, we manually tagged plural, possessive, past tense, and other 
inflected forms (e.g. friends, sister’s, got, drives). We also manually tagged 
the small number of words in our corpus whose lemmas are not included 
in the KELLY lexicon; many of these are proper nouns. 

We then followed Bell et al. (2009) in coding nouns, verbs, adverbs 
and adjectives as content words and all other words as function words. 
Like Bell et al., we excluded from analysis at the word level the 
high-frequency sequences you know (N = 58) and I mean (N = 14), the 
discourse markers yeah (N = 41) and eh (N = 24), acronyms parsed as 
individual words (N = 71) and utterances of three words or fewer (108 
utterances). We also excluded contracted forms such as didn’t and I’m, 
which WebMAUS parsed as single word forms (N = 618). Moreover, we 
excluded words that could be classed as either function or content 

depending on context (N = 2693), such as about, in, on, over (preposition 
or adverb) and homonyms like can (modal verb and noun). Finally, we 
excluded a small number of short function words such as a and are that 
were transcribed by Gold (2014) because grammatically licensed, but 
not associated with a segmental realisation (N = 76).2 These exclusions 
took our corpus size for the word- and phone-level analyses of deletion 
down to 16,041 words comprising 20,596 canonical syllables and 51, 
741 canonical phones. 

2.4. Quantitative analysis 

We carried out all quantitative analysis in R (R Development Core 
Team, 2008). We used basic tidyverse functionality (Wickham et al., 
2019) for exploring distributions, running Pearson’s correlation tests 
and data visualisation, along with two tailored scripts for implementing 
the ‘moving window’ and random sampling methods we describe below. 

We used the package fvclrr (Lo, 2018) for calculating the discrimi-
nant power for each of the five tempo measures in terms of Bayesian 
likelihood ratios (LRs). This package is based on the MATLAB imple-
mentation of Aitken and Lucy’s multivariate kernel-density (MVKD) 
formula (Aitken and Lucy, 2004) by Morrison (2007). We used the 
package to run cross-validated, univariate same speaker (SS) and 
different speaker (DS) LR calculations. Same-speaker LR tests were run 
for each tempo measure individually, such that each of the 100 speakers 
acted as a same-speaker comparison (whereby their tokens were split in 
half for comparison purposes) and the remaining 99 speakers acted as 
the reference population. Different-speaker LR tests were run for each 
tempo measure as well, such that each speaker was compared to every 
other of the 100 speakers, while the remaining 98 speakers in each test 
would serve as the reference population. In total we ran 100 
same-speaker tests and 9900 different-speaker tests. 

We evaluated the discriminant performances of the tempo measures 
in terms of equal error rate (EER), which provides a ‘hard’ accept–reject 
measure of validity, and log-LR cost (Cllr), which provides a more 
‘gradient’ measure of performance (Morrison, 2009). EER is the point at 
which the percentages of false hits and false misses are equal (Brümmer 
and Du Preez, 2006). Cllr is a Bayesian error metric that quantifies the 
ability of a system to align correctly with the expected outcome of 

Fig. 2. Segmentation of one memory stretch 
(did not strike me as particularly important, 
with phone and syllable deletions in did not, 
particularly and important). Tier 1 shows the 
simplified orthographic transcription; Tier 2 the 
canonical form transcription with syllable 
boundaries marked by full stops; Tier 3 the 
surface form transcription by syllable; and Tier 
4 the surface form transcription by phone. The 
word boundaries overlaying Tiers 1 and 2 and 
the syllable boundaries overlaying Tier 3 are 
derived from the phone-level segmentation 
shown on Tier 4.   

2 Greenberg (1999) acknowledges that ‘Under extreme conditions words of 
high frequency (and hence predictability) may be entirely deleted from the 
utterance, but without the listener’s conscious awareness’ and reports that this 
affects less than 1% of words in the Switchboard Corpus (Godfrey and Holli-
man, 1993). This is accurate for our corpus too: 76/(16,041+76) =0.47%. 
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whether speech samples are produced by the same or different speakers. 
As this paper is largely concerned with the relative performance of the 
five speaking tempo measures against one another, we did not calibrate 
the results in order to maximize the number of same speaker and 
different speaker tests that we could run. 

3. Results 

3.1. Syllable and phone deletions 

We first consider the extent of syllable and phone deletion in our 
corpus, as this determines the relationship between canonical and sur-
face rates. Our method identified 1305 syllable deletions and 9835 
phone deletions. This means that 5% of canonical syllables and 14% of 
canonical phones in the corpus as a whole lack a surface realisation. 
Deletion of at least one syllable is observed in 33% of memory stretches. 
As shown in Fig. 3, the maximum number of deleted syllables per stretch 
is 7, but most stretches with deletions have just one missing syllable. 
Stretches with 4 or more syllable deletions are all long, at 15 canonical 
syllables or above (total range 4–22); stretches with no deletion or 
deletion of up to 3 syllables cover the full range of stretch lengths. 
Deletion of at least one phone is observed in 90% of memory stretches. 
As shown in Fig. 3, the maximum number of deleted phones per stretch 
is 17, but most stretches with deletions have between 1 and 4. Memory 
stretches with 10 or more phone deletions all have more than 20 ca-
nonical phones; still, zero deletion is observed in stretches of up to 45 
canonical phones (16 words). The relationship between syllable and 
phone deletions is reasonably linear (r = 0.59), but each observed 
number of syllable deletions maps to a considerable range of phone 
deletions. For example, a stretch without any syllable deletions may still 
have up to 40% of its canonical phones missing a surface realisation. 

While in-depth analysis of word- and phone-level deletion patterns is 
outside of the scope of this paper, we report summary statistics for 
comparison with those observed in other English corpora. The corpus as 
a whole has 6889 function words and 9152 content words. 5% of all 
words (N = 809) are subject to at least one syllable deletion and 18% (N 
= 2844) are subject to at least one phone deletion. Table 2 breaks these 
deletion rates down by word type. Table 2 shows that function words are 
on average shorter than content words and function words are slightly 
less likely to exhibit deletion. 

At the phone level, the two consonants most prone to deletion (across 
content and function words) are /d/ (32% of canonical phones deleted) 
and /h/ (15% deleted); the two vowels most prone to deletion are /ʊ/ 
(32% of canonical phones deleted) and /ə/ (25% deleted). Of course 
word-specific pronunciation patterns influence these numbers: for 
example, more than half of /d/-deletions occur in the function word and; 
/h/-deletion is the norm in him, her, his and so on; and more than half of 
/ʊ/-deletions occur in the content word actually. These observations 
arguably call the validity of our canonical forms into question. While we 
consider this an interesting theoretical question (Ernestus, 2014; Koh-
ler, 2000; Pierrehumbert, 2002), we must leave it aside here: for the 
purpose of our articulation rate analyses, we follow common practice in 
defining relevant linguistic units, and this entails referring to a standard 
lexicon of canonical word forms. 

The deletion rates reported above are roughly comparable to those 
reported in previous corpus-based studies of English—although admit-
tedly the pool for comparison is small and focused on American English. 
In comparison with our gross syllable deletion rate of 5%, Fosler-Lussier 
and Morgan (1999) cite a rate of 3% in the Switchboard Corpus (God-
frey and Holliman, 1993). In comparison with our gross phone deletion 
rate of 14%, Greenberg (1999) and Fosler-Lussier and Morgan (1999) 
both report a rate of 13% in Switchboard, while Shattuck-Hufnagel and 
Veilleux (2007) report deletion of 8% of all ‘acoustic landmarks’ in a 
small corpus of American English dialogue. In comparison with the 
percentages of words with at least one unit deletion reported above, 
Johnson (2004) reports that ‘over 20%’ of words in the Buckeye Corpus 

of Conversational Speech (Kiesling et al., 2006) have at least one phone 
deletion; Dilts (2013) reports 22% for the same corpus. Johnson reports 
identical percentages for syllable deletion to those in Table 2 at least one 
syllable deletion in 5% of function words and 6% of content words. 

This means that collectively, the speakers in our corpus do not 
appear to be unusually careful articulators or speakers of a variety of 
English with relatively little deletion. Therefore, we can be reasonably 
confident that correlations between canonical and surface rates 
observed in our corpus generalize to other English corpora. 

They may indeed generalize beyond English: for example, for Dutch, 
Van Bael, Baayen, and Strik (2007) report a gross syllable deletion rate 
of 6% and a gross phone deletion rate of 8% in speech selected from the 
Spoken Dutch Corpus (Oostdijk, 2002); Schuppler et al. (2011) report a 
gross syllable deletion rate of 9% in the Ernestus Corpus of Spontaneous 
Dutch (Ernestus, 2000). Van Bael et al. (2007) also report that 7% of 
words have at least one syllable deletion and 20% of words have at least 
one phone deletion. Strik et al. (2008) report that 15% of words in a 
different selection of speech from the Spoken Dutch Corpus (Oostdijk, 
2002) have at least one phone deletion. For German, Zimmerer (2009) 
reports that in the Kiel Corpus of Spontaneous Speech (IPDS, 1994), 16% 
of all segments lack a surface realisation. For French, Adda-Decker et al. 
(2005) report an overall syllable deletion rate of 6%, as well as deletion 
rates of 13% for consonants and 15% for vowels in a corpus of sponta-
neous speech from radio interviews,. This means that these corpora are 
likely to yield similar correlations between canonical and surface 
articulation rates to those reported below, too. 

We should note that in our corpus there is considerable inter-speaker 
variation in the prevalence of deletion: gross syllable deletion rates vary 
from close to zero to 14% between speakers (cf. 5% across speakers), and 
gross phone deletion rates vary between 4% and 16% (cf. 14% across 
speakers). For this reason we consider correlations between canonical 
and surface articulation rates by speaker below. 

3.2. Canonical syllable rate: Gold (2014) vs WebMAUS 

As indicated above, we derived our five rate measures from a semi- 
automatic syllabification and forced alignment workflow in Web-
MAUS. However, we also had access to the syllable rate figures of Gold 
(2014), which were derived from Gold’s own estimations of canonical 
syllable counts. Of course decisions as to the composition of canonical 
forms have an impact on canonical syllable rate measures, as well as on 
the relationship between canonical and surface rate measures—that is, 
on what constitutes deletion. As these decisions are open to debate 
(Cangemi and Niebuhr, 2018; Ernestus, 2014; Kohler, 2000; Pierre-
humbert, 2002), they can be considered another layer of ‘researcher 
degrees of freedom’. To explore this layer, we compared the syllable 
counts of Gold (2014) with those generated by PHO2SYL in our Web-
MAUS workflow. We found that these are identical for 2500 out of 2786 
memory stretches (90%). Over half of the discrepancies (167 out of 286, 
58%) are related to lexical items whose syllabification is indeed debat-
able, such as actually (3~4 syllables), particularly (4~5), secondary 
(3~4) camera (2~3) and tour (1~2) ;3 most of the remainder contain 
contracted forms, which Gold (2014) appears to have ‘reconstructed’ (e. 
g. he’s 2 syllables) and PHO2SYL has not (e.g. he’s 1 syllable); and in a 
small number of cases Gold’s counts simply seem erroneous. 

Unsurprisingly, given the high level of agreement on syllable counts, 
the canonical syllable rates of Gold (2014) and WebMAUS are very 
strongly correlated, at r = 0.97 (CI 0.972–0.975). This is illustrated in 
Fig. 4. In what follows, we will leave the syllable rate values of Gold 
(2014) aside and quantify the relationships among the five rate 

3 The complete list of lexical items is actually, Barbara, camera, evening, 
eventually, every, general, geography, interest(ed), memory, occasionally, particu-
larly, really, regularly, secondary, several, specifically, theatre, tour, travelling, 
usually. 

L. Plug et al.                                                                                                                                                                                                                                     



Speech Communication 132 (2021) 40–54

45

measures derived from our semi-automatic syllabification and segmen-
tation using WebMAUS. 

3.3. Rate distributions 

Before turning to our five rate measures, we can note one distant 
outlier in Fig. 4a single memory stretch produced at an extremely high 
tempo (e.g. canonical syllable rate > 18 sylls/sec, surface syllable rate >
13 sylls/sec). While the memory stretch in question (What do you do for a 
living?) appears to have been segmented accurately, and Fig. 4 confirms 
that Gold’s syllable count was the same as that of WebMAUS, we deemed 
it appropriate to exclude it from the data set for the purpose of our 
correlation analysis. Fig. 5 shows that after the removal of this one data 
point, the distributions of the five rate measures are reasonably sym-
metrical. For both syllable and phone rates, the surface rate distribution 
appears somewhat closer to normal than the canonical rate distribution: 
canonical syllable rate shows some right skew which is less obvious for 
surface syllable rate, while canonical phone rate has several positive 

outliers that are absent in the surface phone rate distribution. The data 
points making the difference here are memory stretches produced at 
high tempo with multiple instances of syllable or phone deletion: these 
have high canonical rates but substantially lower surface rates. 

With reference to the observed rate ranges and means (see the ver-
tical dashed lines in Fig. 5), comparison with figures reported in other 
studies of speech tempo in British English is not straightforward due to 
methodological variation (cf. Jessen, 2007): for example, Tauroza and 
Allison (1990) report a mean canonical syllable rate of 4.3 sylls/sec (to 
be precise, 260 sylls/minute) for their sample of conversational speech, 
but appear to have quantified speaking rate (including pauses) as 
opposed to articulation rate. Moreover, it is clear from variationist 
research that there is considerable variation in speech tempo within 
language varieties delimited as broadly as ‘British English’ (see Clopper 
and Smiljanic, 2015; Coats, 2019; Jacewicz et al., 2010; Kendall, 2013; 
Kowal et al., 1983; Quené, 2008). The corpus of Lee and Doherty (2017) 
seems comparable in design to the DyViS database, although its speakers 
are simply described as ‘Irish English’. 

In very general terms, we can note that the mean syllable rates (6.55 
canonical sylls/sec, 6.21 surface sylls/sec) seem high compared with 
similarly quantified rates reported for samples of American English 
spontaneous speech by Jacewicz et al. (2010), Kendall (2013) and 
Clopper and Smiljanic (2015). The latter tend to be closer to 5 for males. 
Note that Gold (2014) calculated a mean canonical syllable rate of 6.59 
sylls/sec on our data set (see Fig. 4 above). Lee and Doherty (2017), who 
motivate their investigation of speech tempo in Irish English with the 
impressionistic observation that Irish English speakers speak faster than 
speakers of other varieties of English, report a mean articulation rate of 
5.88 surface sylls/sec for male speakers’ spontaneous speech. Unlike in 
Kendall’s data, but as in Jacewicz et al.’s, measured rates are negatively 
correlated with stretch duration: shorter memory stretches are (weakly) 
associated with higher articulation rates (canonical syllable rate: 
r=–0.17, surface syllable rate: r=–0.16, canonical phone rate: r=–0.20, 
surface phone rate: r=–0.18, CV rate: r=–0.22).4 

In relation to inter-speaker variation, Fig. 6 plots means calculated 
by speaker (that is, across the approximately 30 memory stretches 
produced by each speaker) against corresponding coefficients of vari-
ance. The coefficient of variance, or ‘relative standard deviation’ is 
calculated here by dividing the standard deviation by the mean for each 
individual speaker’s rate distribution. It is a conservative measure of 
variance which corrects for the general finding in the analysis of tem-
poral events that higher means are associated with higher standard 
deviations (see Jessen, 2007; Shaw et al., 2009, 2011). As shown in 
Fig. 5, speaker means vary substantially around the across-speaker 

Fig. 3. Histograms for N syllable and phone deletions, excluding stretches with zero deletion.  

Table 2 
Summary statistics for the correlations between canonical syllable and phone 
rates (left) and surface syllable and phone rates (right); r is the Pearson’s cor-
relation coefficient and CI the corresponding 95% confidence interval. In the 
linear model equations, CPR = canonical phone rate, CSR = canonical syllable 
rate, SPR = surface phone rate, SSR = surface syllable rate.   

Canonical rates Surface rates 

r 0.85 0.82 
CI 0.84–0.86 0.81–0.84 
linear model CPR = 2.9 + 2.2 × CSR SPR = 3.9 + 1.8 × SSR 
r range (by speaker) 0.63–0.94 0.50–0.95  

Fig. 4. Scatterplot illustrating the correlation between the canonical syllable 
rates derived from WebMAUS syllabification (x-axis) and calculated by Gold 
(2014) (y-axis), with LOESS fit lines. 

4 Quené (2008) and Schwab and Avanzi (2015) observe the same effect of 
duration as Kendall does, in analyses of Dutch and French corpora, respecti-
vely—that is, longer phrases are associated with higher articulation rates. 
Quené (2008) accounts for this effect in terms of ‘anticipatory shortening’. Note 
that this account makes sense if the stretches of speech under study constitute 
planning units in speech production. This is arguably less obvious for memory 
stretches than for inter-pause stretches or intonation phrases. 
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means (shown again by the vertical dashed lines). We also see consid-
erable variation in within-speaker variance: for example, for all rates the 
most highly variable speakers have a coefficient of variance that is at 
least twice that of the least variable speakers. There is no obvious linear 
relationship between means and coefficients of variance: that is, faster 
speakers are not necessarily more variable relative to their means. 

3.4. Inter-correlations 

We now turn to the inter-correlations among the five rate measures. 
In what follows, we compare syllable and phone rates, canonical and 
surface rates, and syllable and CV rates in turn. For each individual 
comparison, we provide a correlation plot and associated statistics, and 
we examine how the relationship between the two measures in question 
varies by speaker. 

3.4.1. Syllable ~ phone rates 
Fig. 7 shows scatterplots for two comparisons of syllable and phone 

rate: one in which both are calculated on the basis of canonical unit 
counts (left), and one in which both are calculated on the basis of 
observed unit counts (right). It is clear that in both cases, the syllable 
and phone rate are strongly correlated. Note that the straight lines of 
data points visible in both plots represent stretches for which the phone 
rate is exactly twice or three times the syllable rate. The strength of the 
correlations is confirmed by Pearson’s correlation tests, results of which 
are shown in Table 2. The correlation for canonical rates is stronger by a 
small margin. 

Table 2 also shows that the correlation coefficients vary considerably 
by speaker. This is of course to be expected: correlation coefficients 
calculated over about 30 data points are far more likely to be influenced 

by small sets of data points, or even individual ones, compared with 
coefficients calculated over hundreds of data points. It also makes sense 
that surface rates show more variation by speaker: for canonical rates, 
the relationship between syllable and phone rate is primarily deter-
mined by the phonotactics of the speakers’ memory stretches, while for 
surface rates, the relationship depends on phonotactics and on speakers’ 
production tendencies. As shown in Fig. 8, for canonical rates only 5 out 
of 100 correlation coefficients are below 0.7; for surface rates 15 out of 
100 are below 0.7. Note that the speaker with the lowest correlation 
coefficient for surface rates seems somewhat of an outlier on that mea-
sure, but closer inspection suggests that the coefficient is heavily influ-
enced by the speaker’s production of a single memory stretch. In this 
stretch, friends from secondary school [fɹεnz fəm sεkdɹɪ skuːl], the syllable 
deletion in secondary (assumed canonical form /sεkəndɹɪ/) yields an 
untypically low surface syllable rate given the surface phone rate. 
Excluding this single stretch from the speaker’s sample increases the 
speaker’s correlation coefficient to r = 0.63, which is no longer sepa-
rated from the rest of the distribution. 

3.4.2. Canonical ~ surface rates 
Fig. 9 shows scatterplots for two comparisons of canonical and sur-

face rate: one for syllables (left) and one for phones (right). Again it is 
clear that in both cases, the syllable and phone rate are strongly corre-
lated. Note that the prominent straight lines of data points in both plots 
represent stretches with no deletions: for these stretches, canonical and 
surface rates are equivalent. Most other data points predictably fall 
below these lines: for these stretches, deletions lower the surface rate 
relative to the canonical rate. Just a few data points fall above the lines; 
these have no deletions and one syllable or phone insertion each. There 
were 83 such instances, 74 of which reflect insertion of a phone due to 

Fig. 5. Histograms for articulation rates: canonical and surface syllable rates (top, bin size 0.5 sylls/sec), canonical and surface phone rates (middle, bin size 1 
phone/sec) and CV rate (bottom, bin size 1 segment/sec); in each graph, the dotted vertical line locates the mean. 
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Fig. 6. Scatterplots illustrating variation in measured rate by speaker, plotting means (x-axis) against coefficients of variance (y-axis). Each data point represents one 
speaker, and in each graph, the dotted vertical line locates the overall mean. 

Fig. 7. Scatterplots illustrating the correlations between canonical syllable and phone rates (left) and surface syllable and phone rates (right), with LOESS fit lines.  

Fig. 8. Histograms for correlation coefficients (Pearson’s r) calculated by speaker: correlations between canonical syllable and phone rates (left) and surface syllable 
and phone rates (right). 
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linking /r/, for example in the sequences for a, or whether I. As it was 
trained on SSBE, a non-rhotic variety, the MAUS forced aligner did not 
parse postvocalic /r/ as a canonical realisation. Nevertheless, since these 
insertions only occur in 0.5% of words it is clear that their impact is 
minimal. The strength of the correlations is confirmed by Pearson’s 
correlation tests, results of which are shown in Table 3. Excluding the 
memory stretches with no deletions has almost no impact on the 
strength of the correlations (r = 0.90 for syllable rates, r = 0.83 for 
phone rates). 

However, it should be clear from the shape of the data scatters in 
Fig. 9 that the correlations vary systematically with overall tempo. Some 
of the memory stretches produced at the higher ends of the rate ranges 
are produced with very few deletions; at the same time, ‘massive dele-
tion’ is more likely than at the lower ends of the rate ranges. As a result, 
the range of differences between canonical and surface rates increases as 
rates increase, and corresponding correlations weaken. This is shown by 
the LOESS fit lines in Fig. 9. To get closer to capturing this pattern with 
linear correlations, we implemented a ‘moving window’ approach to 
sampling: for both syllable and phone rate, we sampled 5 subsets of 
memory stretches, each making up a 60-percentile portion of the ca-
nonical rate distribution, with a step size of 10 percentiles—0–60, 
10–70, 20–80, 30–90 and 40–100—and ran correlation tests on these 
subsets. We chose these window and step sizes to have reasonably 
sizeable samples to calculate correlations over (>1500 data points). 
Fig. 10 plots the correlation coefficients against the central canonical 
rates in the percentile ranges. The figure suggests that for both syllable 
and phone rates, the overall correlation reported in Table 3 is strongly 

determined by the correlation observed at lower rates. Still, for syllable 
rate, correlation coefficients stay above r = 0.7 throughout, while for 
phone rate, correlation coefficients stay above r = 0.6.5 

Again, the correlation coefficients vary by speaker; however, the 
range of this variation is narrower than in the comparison of syllable and 
phone rates. For syllable rates no individual speaker sample has a cor-
relation between canonical and surface rates with a coefficient below r 
= 0.7. As shown in Table 3 and Fig. 11, for phone rates only one 
speaker’s sample has a correlation coefficient below r = 0.7. Inspection 
of the sample for this speaker suggests that the low correlation coeffi-
cient (r = 0.57) is not due to individual memory stretches with atypical 
rate values: the sample is simply characterised by a wide range of phone 
deletion numbers per stretch, yielding a wide range of differences be-
tween canonical and surface rate values. The speaker produces only one 
memory stretch with no phone deletion; by comparison, he produces 16 
stretches with no syllable deletions, which means the correlation coef-
ficient for canonical and surface syllable rates in the same sample is 
considerably higher (r = 0.80). 

3.4.3. CV rate 
As CV rate is a surface rate, we compare it with surface syllable and 

phone rates. Fig. 12 and Table 4 show that the two correlations are 
almost identical, at r = 0.78. Note that the straight lines of data points 
visible in the left plot in Fig. 12 correspond to memory stretches for 
which the CV rate is exactly 1.5 times or twice the syllable rate; these are 
fairly frequent. Again there is considerable variation between speakers, 
and again there are some apparent ‘outlier’ speaker samples, as seen in 
Fig. 13. We leave the details of these samples aside here. 

3.4.4. Correlations in random data samples 
So far we have reported correlations calculated across our entire 

corpus and correlations calculated by level or percentile range for 
relevant variables, such as speaker and stretch duration. As a final step 
in our examination of inter-correlations among our five rate measures, 
we also implemented a random sampling procedure. This was to simu-
late a range of research or applied scenarios in which analysis might be 
done on smaller versions of a corpus such as ours—for example, on a 
language learner production corpus with fewer speakers and utterances 
per speaker, or on a small set of phrases sampled from a corpus for use as 
stimuli in a listening experiment—and articulation rates are to be 
quantified for analysis. Even if correlations calculated across our whole 

Fig. 9. Scatterplots illustrating the correlations between canonical and surface syllable rates (left) and canonical and surface phone rates (right), with LOESS fit lines.  

Table 3 
Summary statistics for the correlations between canonical and surface syllable 
rates (left) and canonical and surface phone rates (right); r is the Pearson’s 
correlation coefficient and CI the corresponding 95% confidence interval. In the 
linear model equations, CSR = canonical syllable rate, SSR = surface syllable 
rate, CPR = canonical phone rate, SPR = surface phone rate.   

Syllable rates Phone rates 

r 0.90 0.84 
CI 0.89–0.91 0.83–0.85 
linear model CSR = 0.2 + 1.0 × SSR CPR = –0.1 + 1.2 × SPR 
r range (by speaker) 0.73–0.99 0.57–0.98  

5 We also examined how the correlations vary with stretch duration, partic-
ularly as syllable and phone deletions have a proportionally greater impact on 
articulation rates in shorter stretches of speech. We sampled 5 subsets of 
memory stretches, each making up a 60-percentile portion of the stretch 
duration distribution, with a step size of 10 percentiles and ran correlation tests 
on these subsets. This revealed minimal variation around the correlation co-
efficient calculated across the entire distribution, so we do not report the 
resulting figures. Comparison runs with alternative sizes yielded very similar 
results, so we are confident in concluding that stretch duration does not sub-
stantially affect the relationships among the rate measures we report. 
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corpus are very strong, smaller subsets may show less predictable re-
lationships between rates: we have already seen this in the results of the 
analysis by speaker. We were interested in how low correlation co-
efficients might go in random data samples of varying sizes. To check 
this, we created random samples of memory stretches with the sizes N =
10, N = 25, N = 50, N = 100, N = 150, N = 200, N = 250, N = 500 and N 

= 1000. For each size, we created 100 random samples. We ran a 
Pearson’s correlation test in each of the 100 samples at each of the nine 
sample sizes: this way, each sample size generated a distribution of 100 
correlation coefficients. We ran this procedure separately for each 
pairwise rate comparison. We were particularly interested in how many 
of the coefficients were below r = 0.7. 

Fig. 14 visualises the output of this procedure. For each pairwise rate 
comparison and each sample size, it shows a boxplot summarizing the 
distribution of correlation coefficients (N = 100 random samples of the 
specified size).6 Looking first at the plot for the correlation between 
canonical syllable and phone rates (top row, left), we see that the cor-
relation coefficient distributions are centred close to the coefficient 

Fig. 10. Correlation coefficients (Pearson’s r) calculated by percentile range in the canonical rate distribution: correlations between canonical and surface syllable 
rates (left) and canonical and surface phone rates (right). The x-axis value of each data point is the central value in a 60% portion of the canonical rate distribution. 

Fig. 11. Histograms for correlation coefficients (Pearson’s r) calculated by speaker: correlations between canonical and surface syllable rates (left) and canonical and 
surface phone rates (right). 

Fig. 12. Scatterplots illustrating the correlations between surface syllable and CV rates (left) and surface phone and CV rates (right), with LOESS fit lines.  

Table 4 
Summary statistics for the correlations between surface syllable and CV rates 
(left) and surface phone and CV rates (right); r is the Pearson’s correlation co-
efficient and CI the corresponding 95% confidence interval. In the linear model 
equations, CVR = CV rate, SSR = surface syllable rate, SPR = surface phone rate.   

Syllable rate Phone rate 

r 0.78 0.78 
CI 0.77–0.80 0.77–0.80 
linear model CVR = 2.2 + 1.5 × SSR CVR = 1.1 + 0.7 × SPR 
r range (by speaker) 0.43–0.91 0.42–0.90  

6 Note that because sampling is random, the procedure produces different 
output each time it is run. We therefore ran it multiple times for each pairwise 
comparison, and were satisfied that the general shapes of the output distribu-
tions are stable across runs. 
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calculated across the whole corpus (r = 0.85, see Table 2) for all sample 
sizes, and the distributions for sample sizes of 150 and up are very 
narrow. This means that the correlation between these two measures 
comes out in the region of r = 0.85 pretty much whatever random data 
sample we consider even when working with sample sizes as small as 
150 (about 5% of the total corpus). Distributions are predictably widest 
for the smallest sample sizes, but fewer than 10 individual samples yield 
a correlation coefficient below r = 0.7, at sample sizes 10 and 25. 

Interpreting the other plots in the same way, we see that the corre-
lation between surface syllable and phone rates is somewhat weaker 
than that between the canonical rates, as also reflected in the correlation 
coefficient calculated across the corpus (r = 0.82, see Table 2). Here 
fewer than 30 correlation coefficients fall below r = 0.7, at sample sizes 
10, 25 and 50. The correlation between canonical and surface syllable 
rates is the strongest overall (r = 0.90, see Table 3), and fewer than 5 
individual samples yield a correlation coefficient below r = 0.7. The 

correlation between canonical and surface phone rates (r = 0.84, see 
Table 3) is very similar to that between surface syllable and phone rates; 
here correlation coefficients fall below r = 0.7 at sample sizes 10 and 25. 
The correlations between CV rate and surface syllable and phone rates 
are the weakest overall (r = 0.78 for both comparisons, see Table 4), and 
this is reflected in comparatively large proportions of coefficients below 
r = 0.7 (maximum around 30 out of 100, for CV and surface phone rates 
at sample size 10) spread across a comparatively wide range of sample 
sizes. 

3.5. Discriminating power 

As indicated above, we decided to compare our five rate measures in 
one particular type of analysis in which the choice between alternative 
measures might in theory be consequential. Given the results of our 
correlation analysis, we can predict that the five measures are highly 

Fig. 13. Histograms for correlation coefficients (Pearson’s r) calculated by speaker: correlations between CV and surface syllable rates (left) and CV and surface 
phone rates (right). 

Fig. 14. Boxplots showing correlation coefficient distributions in random data samples of varying sizes; for each size, 100 samples were taken.  
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similar in discriminant power as quantified through Bayesian likelihood 
ratio calculations. Table 5 confirms that this is the case. As indicated 
above, the equal error rate (EER) provides a ‘hard’ accept–reject mea-
sure of validity while the log-likelihood ratio cost (Cllr) provides a more 
‘gradient’ measure of discriminant performance. For both, higher values 
are interpreted as poorer performance. For Cllr, values close to zero 
indicate a good system performance; values above 1 a poor one. The 
figures in Table 5 suggest that tempo is a relatively poor speaker 
discriminant parameter on its own, regardless of methodology, as it is 
characterised by rather high EER values and Cllr values close to 1, and 
that the differences among the five rate measures are small. Still, it is 
interesting to note that canonical syllable rate as calculated by Gold 
(2014) appears to be the weakest measure: therefore, relying on a 
semi-automated syllabification and segmentation workflow certainly 
does not have a negative effect on discriminant performance. 

Fig. 15 plots the EER and Cllr figures alongside those for other pa-
rameters quantified by Gold (2014) on the same corpus. All figures were 
derived using the same method used in this paper, without calibration, 
using the MATLAB or R implementation of Aitken and Lucy’s multi-
variate kernel-density (MVKD) formula (Aitken and Lucy, 2004). In this 
kind of plot, measures closest to the bottom left have the greatest 
discriminating power. Our five rate measures occupy a narrow region of 
the plot close to several individual formant measurements, but at 
considerable distance from fundamental frequency. Moreover, several 
studies have shown that measures generalising over multiple formants 
have considerably greater discriminating powers than individual 

formant measures (see Gold et al., 2013; Hughes et al., 2016). The figure 
confirms that the differences between canonical and surface variants of 
phone and syllable rates are particularly small. The two phone rate 
measures are somewhat stronger discriminant parameters than the syl-
lable rate ones, particularly for EER. CV rate is weaker for EER than its 
closest comparison measure, surface syllable rate. 

4. Discussion 

In this study we investigated the extent to which articulation rates 
derived from syllable, phone and CV segment counts are correlated, and 
how they compare in terms of Bayesian likelihood ratios. For syllable 
and phone rates, we included canonical and surface rate calculations; for 
canonical syllable rate, we included figures calculated ‘manually’ by 
Gold (2014) and figures derived from the syllabifications generated in 
our WebMAUS workflow. As indicated at the outset of this paper, 
explicit comparisons of the distributions generated by such alternative 
measures are rare, although they elucidate whether the methodological 
choice between these measures is likely to be consequential for analysis 
outcomes. As such, they also inform comparisons of findings across 
studies in which different methodological choices were made. 

In comparing the relevant distributions, we have proposed to adopt 
the ‘rule of thumb’ that variables which are correlated with each other at 
r>0.70 overlap sufficiently to be considered ‘effectively equivalent’ 
(Dormann et al., 2013). If we do, our general conclusion can be that 
canonical syllable rate, surface syllable rate, canonical phone rate, sur-
face phone rate and CV rate are ‘effectively equivalent’ in our corpus, 
and alternative decisions as to the constitution of canonical forms do not 
jeopardise this effective equivalence. We examined correlation co-
efficients across the corpus as well as within a series of subsets—by 
speaker, by stretch duration, by quantile range and by random sam-
pling—and in the majority, correlations stay at r>0.70. Some individual 
speakers show weaker correlations, and when randomly sampling very 
small sets of utterances from the corpus, such as sets of 10, it seems likely 
that different measures place individual utterances quite differently on a 
rate scale. It is debatable, of course, whether correlation coefficients 
calculated over 30 or fewer data points are reliable; in any case, most 
comparisons confirmed the strong inter-correlations among the five rate 
measures. 

We also noted that the measures yield very similarly shaped 

Table 5 
Summary results of a Bayesian likelihood ratio analysis comparing the five rate 
measures: equal error rate (EER) and likelihood ratio cost (Cllr). The rate 
measures are presented in descending order by EER.   

Equal error rate 
(EER) 

Likelihood ratio cost 
(Cllr) 

Canonical phone rate 28% 0.80 
Surface phone rate 29% 0.84 
Surface syllable rate 32% 0.87 
Canonical syllable rate 

(WebMAUS) 
34% 0.86 

CV rate 37% 0.88 
Canonical syllable rate (Gold 

2014) 
40% 0.94  

Fig. 15. Scatterplot showing equal error rates (x-axis) and log-likelihood ratio costs (y-axis) for our five rate measures and selected comparison measures from 
Gold (2014). 
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distributions with similar patterns of inter-speaker variation. Unsur-
prisingly, our Bayesian log-likelihood analysis revealed very similar 
performance across the five measures. This confirms that in a forensic 
context, it is unlikely that a choice between these five measures of 
speech tempo will be consequential for analysis outcomes. More 
generally, our findings suggest that we can assume with some confi-
dence that past studies which used one of the five measures to quantify 
speech tempo would not have yielded substantially different results had 
they used another of the five measures: since the measures produce very 
similarly-shaped distributions, so that any analyses involving group 
comparisons or using speech tempo as a control variable should produce 
very similar results whichever measure is implemented. 

Of course the measures do produce figures on different scales, so 
absolute values cannot be directly compared across studies. However, 
the regression equations we have reported above can be used as con-
version formulas, and our comparisons of rate distributions provide an 
insight into the quantitative effects of several of the methodological 
decisions analysts are faced with when measuring tempo. In particular, 
Jessen (2007) suggests that Künzel (1997) may have reported a mean 
syllable rate of about 0.7 sylls/sec above that of his own observed mean 
(5.89 vs 5.21) because Künzel (1997) measured canonical syllable rate, 
not surface syllable rate. This seems reasonable, although in our study 
the difference in mean between the two measures is considerably 
smaller, at around 0.3 sylls/sec (6.55 vs 6.21). Moreover, our compar-
ison between the canonical syllable rates calculated by Gold (2014) and 
WebMAUS suggests that making different decisions on the canonical 
syllable make-up of contentious lexical items has a small effect on ca-
nonical syllable rate figures: WebMAUS’ syllabification yielded a mean 
of only 0.05 sylls/sec below Gold’s. Gold (2014) reports a similarly small 
difference between means calculated over sets of memory stretches and 
inter-pause stretches for the same 25 speakers (5.96 vs 5.98 
respectively). 

It seems unlikely, therefore, that the observed differences between 
Gold’s and our means on the one hand and those of previous studies on 
other English corpora on the other—which are in the region of 1 syll/ 
sec—can be attributed to differing decisions of the type just described. 
As Jessen (2007) suggests, another methodological decision that is likely 
to have an impact on rate figures is whether stretches with filled pauses 
or other markers of hesitation, in particular noticeable segmental or 
syllabic lengthenings, are included or excluded. They were excluded in 
our study and, insofar as we can make out, in the studies of Jacewicz 
et al. (2010), Kendall (2013), Clopper and Smiljanic (2015) and Lee and 
Doherty (2017). As Jessen (2007) points out, studies in which they are 
included are likely to report lower mean rates. Unfortunately our anal-
ysis has not allowed us to quantify the impact of this decision. 

Our results have at least two further practical implications. First, CV 
rate was described by Dellwo et al. (2006) as an efficient alternative to 
syllable rate, as its calculation does not involve making phonological 
decisions as to where syllable boundaries may be, how to treat ‘syllabic’ 
consonants and so on. In our corpus, CV rate is correlated with surface 
syllable rate below r = 0.80 and its by-speaker correlation coefficients 
include some of the lowest that we have observed across comparisons. 
The measure is not particularly strong in terms of discriminating power, 
so offers no obvious advantage over phone or syllable rates in a forensic 
context. Furthermore, we can question its efficiency as an alternative to 
syllable rate given that its calculation requires phone-level segmentation 
and phone rates are more closely correlated with syllable rates than CV 
rate; moreover, phone rates appear to be the strongest rates in terms of 
discriminating power. In a workflow like ours, therefore, there would 
seem to be no practical advantage to calculating CV rates compared with 
calculating syllable or phone rates. 

Second, our findings suggest that at least for English and languages 
with similar phonotactics, speech rate estimators that depend on the 
automatic identification of acoustic correlates of syllables, (Bakker et al., 
1995; de Jong and Wempe, 2009; Heinrich and Schiel, 2010; Martens 
et al., 2015) may well yield very similar output distributions to 

‘rough-and-ready’ phone rate calculations using a general-purpose 
forced alignment system, or even canonical syllable rate calculations 
based on the output of a text-to-syllables conversion. This is because 
these estimators are typically evaluated against ‘manual’ syllable rate 
calculations. As we have seen, in our data set the ‘manual’ syllable rate 
calculations of Gold (2014) are very strongly correlated with the syllable 
rate figures derived from the syllabifications generated in our Web-
MAUS workflow. Therefore, while acoustically-based estimators are 
valuable models of speech tempo perception, for practical purposes 
much more basic tools may well produce ‘effectively equivalent’ figures. 

5. Concluding remarks 

The quantification of speech tempo is just one example of a pro-
cedure in phonetic analysis that can be operationalised in multiple ways, 
yielding ‘researcher degrees of freedom’ (Roettger, 2019; Simmons 
et al., 2011) which call the robustness of generalizations across studies 
into question. In this study we have attempted an explicit assessment of 
the impact of researchers’ choices among some of the available mea-
sures. Our results suggests that in a sizeable English corpus with normal 
deletion rates, five common articulation rates are closely 
inter-correlated and have similar discriminating powers; decisions as to 
the segmental make-up of canonical forms also have limited impact on 
distributions. Therefore, for common analytical purposes and forensic 
applications the choice between the measures considered is unlikely to 
substantially affect outcomes. 

Of course, the confidence with which we can make methodological 
recommendations on the basis of our results depends on how repre-
sentative our corpus of Standard Southern British English memory 
stretches is in terms of the measures under consideration. We established 
that our corpus shows similar syllable and phone deletion frequencies to 
other English corpora and at least one Dutch corpus. This suggests that 
the relationships between canonical and surface rates should also 
generalize beyond this study. The relationships among syllable, phone 
and CV rates mostly depend on the phonotactics of the utterances under 
consideration—so while these are language-specific, they should in 
principle generalize reasonably well across varieties of English. 

We hope that this study makes a valuable addition to available 
population data for articulation rate variation, as well as syllable and 
phone deletion, in British English—although our results confirm Gold 
(2014) conclusion that speech tempo is a relatively weak discriminant 
parameter. We also hope that our study provides a straightforwardly 
replicable model for research into the ‘researcher degrees of freedom’ 
(Roettger, 2019; Simmons et al., 2011) that alternative operationaliza-
tions of major phonetic parameters generate. 
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