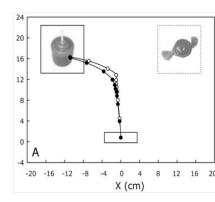


RESEARCH BACKGROUND

Rhoticity in Glasgow is changing. Middle class (MC) speakers are producing more strongly-rhotic variants in words such as car and hurt [1,2], but working class (WC) speech is undergoing derhoticisation, where /r/ is a weaker, pharyngealised variant [1,3].

A similar place of articulation in **derhoticised** /r/ and /n/ (pharynx/uvula) causes perceptual ambiguity in /CrrC, CrC/ minimal pairs (Figs.2&3). Previous experiments show listeners' ability to distinguish pairs improves after long term familiarity (residence in Glasgow) [4] and short term learning (5min lab exposure) [5].

This paper tests the ability of Glaswegians (the most 'fluent' listeners) in distinguishing e.g. hut/hurt of a MC talker & of a WC talker, then examines performance under more difficult listening conditions: when the talkers are **mixed**.


Research question: How does hearing two talkers together affect /r/ perception?

In order to answer this question in the greatest detail, mouse tracking was used, as it allows for in-depth analyses such as spatial attraction.

MOUSE TRACKING

MouseTracker [6] records trajectories, allowing competitor strength to be meaallowing competitor strength to be mea-TRACKER sured [7]. This may highlight detail in

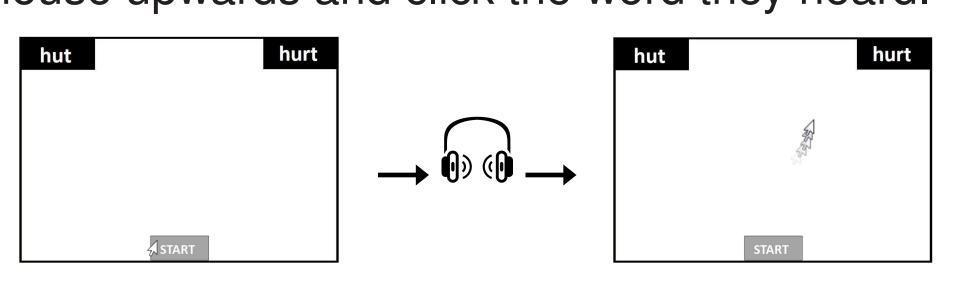
the time course of decisions where there are differences between cohort and control conditions [8].

Perception of Glaswegian rhoticity suffers in challenging listening conditions ROBERT LENNON¹, RACHEL SMITH² & JANE STUART-SMITH²

@robertlennon50 r.w.lennon@leeds.ac.uk ¹University of Leeds, ²Glasgow University Laboratory of Phonetics

EXPERIMENT

Stimuli: 1xMC & 1xWC Gla. males, wordlist data. Target words: hut/hurt bud/bird fussed/first etc.


Design: 3x 2AFC tasks: 2x blocked by talker (for separate analyses of resp. to Single talkers) & 1x Mixed (analysis of resp. to Mixed stimuli).

Single MC $|\rightarrow|$ Single WC $|\rightarrow|$ Mixed MC+WC

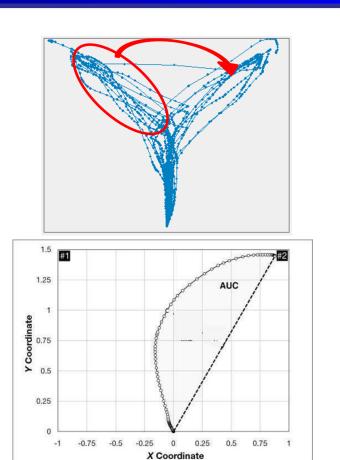
(Order of Single blocks alternated per participant, for balance) Single blocks: 12 target (+12 distr.) min. pairs

Mixed block: all 24(+24) MC & WC pairs **Total = 192 trials** (~30min)

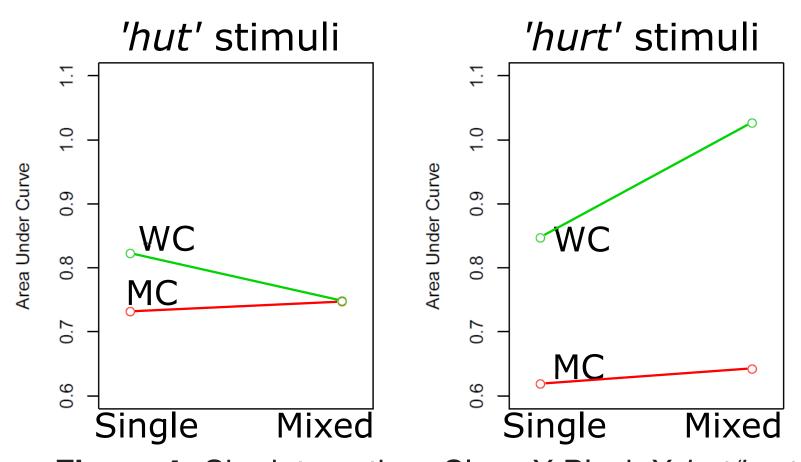
Procedure: On each trial, 51 native Glaswegians (normal hearing) clicked 'START' to play the word (500ms delay). They were instructed to move the mouse upwards and click the word they heard.

ANALYSIS

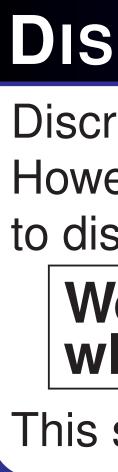
Correct trajectories ending at the top-left were flipped right, for ease of analysis.


Area Under the Curve [6] measures spatial attraction to competitor. Area between each trajectory and an idealised straight line calculated, then averaged.

Discrete Cosine Transformation defines curves as sinusoid coefficients [9]: k0=mean, k1=slope, k2=curvature etc. This facilitates comparison of differences between components of trajectories, as well as statistically modelling the coefficients.


FUTURE RESEARCH

This research will answer another question:


At what point does the listener decide what word they are hearing? Trajectories have been aligned with segment data, enabling real-time comparison of when listeners moved the mouse while hearing stimuli. **Preliminary indications:** following fricatives, to a greater degree than stops or nasals, facilitate earlier discrimination of e.g. bust/burst in MC than in WC. Fricatives can carry information about a preceding segment: spectral analyses found a greater CoG difference between MC /r/ & no-/r/ tokens' fricatives (850Hz), than the difference in WC fricatives (350Hz).

Statistical modelling: Mixed Effects Models run in R's Ime4 package; best-fit models found with ImerTest's step()

more difficulty when heard with WC stimuli

RESULTS

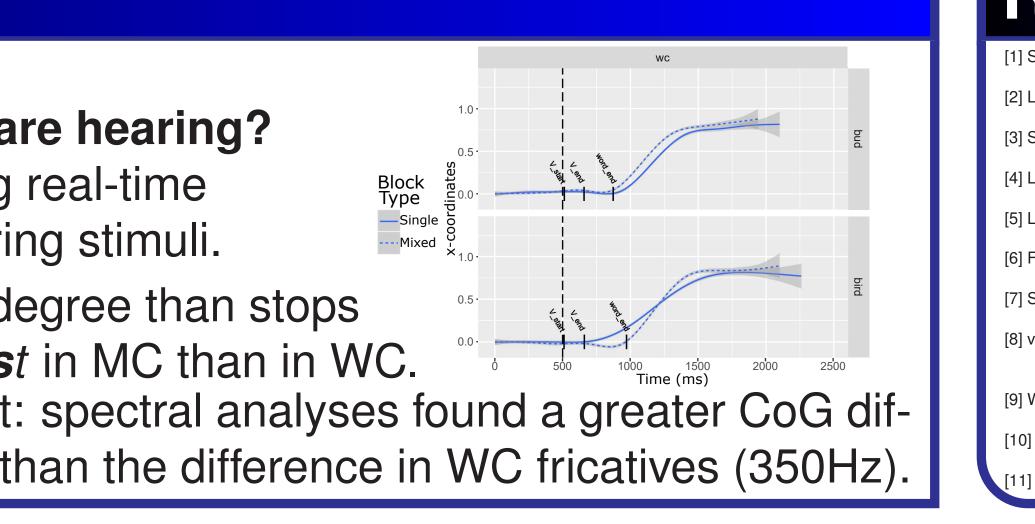
Accuracy:

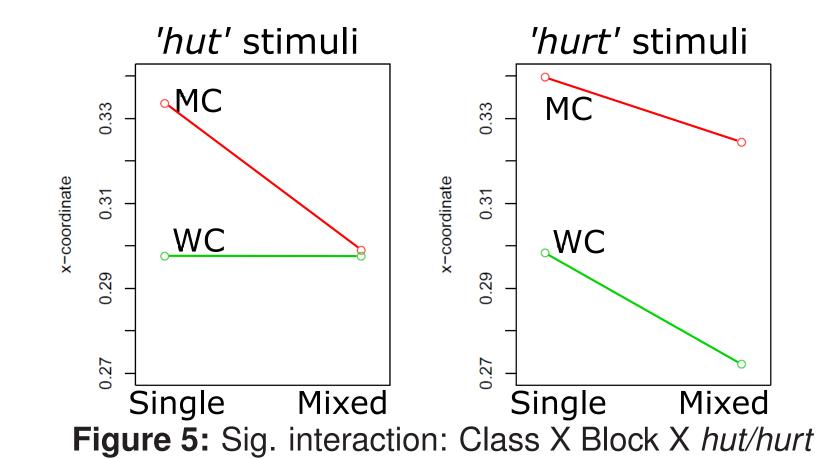
hut/hurt discrimination replicates [4] & [5]: • MC = 99.01%; WC = 90.27%

Area Under the Curve: Interaction: Pr(>F)=0.01, F=6.02

Figure 4: Sig. interaction: Class X Block X *hut/hurt*

• **AUC:** Higher = more spatial attraction to incorrect competitor

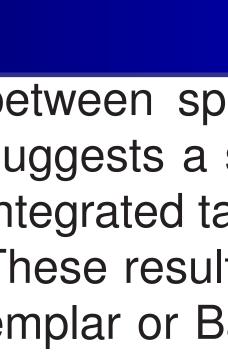

• Higher AUC for WC than MC stimuli Smallest AUC for **MC** *hurt* trajectories in Single block: easiest stimuli to distinguish from hut • Largest AUC for WC *hurt* in Mixed block: hardest stimuli to distinguish from hut • Larger AUC for all MC stimuli in Mixed block:

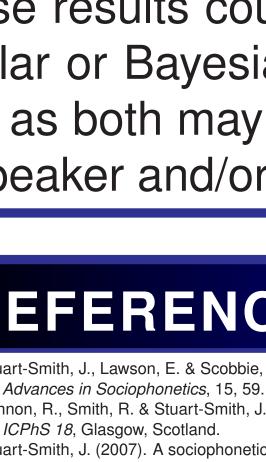

DISCUSSION

Discrimination is harder with derhoticised /r/. However, even the 'easy' MC stimuli were harder to distinguish when heard alongside WC stimuli.

Words are harder to distinguish when talkers are heard together

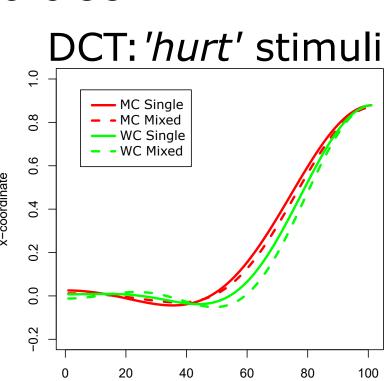
This shows the difficulty of perceptually switching





Norm. time (time=0: 'START' clicked, time=100: 'response' clicked)

Figure 6: x-coords/time, reconstructed from DCT coeffs. k0-k3 Comparison of Figs. 5&6 shows DCT is very effective in describing trajectory patterns



Discrete Cosine Transformation: Int.: Pr(>F)=0.004, F=8.51

• k0 (mean x-coord.): Higher = greater/earlier horizontal movement towards correct response • Earlier movements to correct MC response than to correct WC response

• Earlier movements to correct MC response in Single block than in Mixed block

between speakers with different accents. It also suggests a similar finding as [10 & 11], who found integrated talker & phoneme processing.

These results could be interpreted under either exemplar or Bayesian approaches to speech perception, as both may attribute greater processing costs to speaker and/or linguistic uncertainty.

REFERENCES

uart-Smith, J., Lawson, E. & Scobbie, J. M. (2014). Derhoticisation in Scottish English.

- 2] Lennon, R., Smith, R. & Stuart-Smith, J. (2015). An acoustic investigation of postvocalic /r/ variants in two sociolects of Glaswegian
-] Stuart-Smith, J. (2007). A sociophonetic investigation of postvocalic /r/ in Glaswegian adolescents.
- ICPhS 16, Saarbrücken, Germany Lennon, R. (2014). The effect of exposure in cross-dialect perception: Hearing ambiguous /r/ variants in Glaswegian
- AMLaP 20. Edinburgh, Scotland.] Lennon, R., Smith, R. & Stuart-Smith, J. (2016). Ambiguous rhoticity in Glasgow: Short term exposure promotes perceptual adaptatior
- abPhon15. Ithaca, USA Freeman, J. B. & Ambady, N. (2010). MouseTracker: Software for studying real-time mental processing using a mouse-tracking method avior Research Methods, 42(1), 226-241. Spivey, M. J., Grosjean, M. & Knoblich, G. (2005). Continuous attraction toward phonological competitors.
 - ational Academy of Sciences of the USA, 102(29), 10393-10398.
 - Mitchel, A., Walsh, M. & Rosenbaum, D. (2009). Trajectories Emerging From Discrete Versus Continuous
- Processing Models in Phonological Competitor Tasks: A Commentary on Spivey, Grosjean, and Knoblich (2005) Journal of Experimental Psychology: Human Perception & Performance, 35(2), 588-594
- [9] Watson, C. I. & Harrington, J. (1999). Acoustic evidence for dynamic formant trajectories in Australian English vowels. *Journal of the Acoustical Society of America*, 106(1), 458-468.
- 0] Mullennix, J. W. & Pisoni, D. B. (1990). Stimulus variability and processing dependencies in speech perception Perception & Psychophysics, 47(4), 379-390.

] Clopper, C. (2017). Dialect Interference in Lexical Processing: Effects of Familiarity and Social Stereotypes. Phonetica, 74(1), 25-5